
1. INTRODUCTION

Sometimes it is necessary to integrate a set of ordinary dif-
ferential equations (ODEs) that has a discontinuity, for exam-
ple stochastic forces randomly sampled from a distribution.
Generally, ODE integrators (e.g., Bulirsch-Stoer or even the
normally robust Runga-Kutta) are very unhappy when they
encounter discontinuities in a force function. One way around
this problem is to introduce a finite transition time and then a
continuous function that bridges the transition across the dis-
continuity. The simplest smoothing function is a third-order
polynomial that matches the values and the derivatives at the
two endpoints.

2. AN ENDPOINT-MATCHING CUBIC POLYNOMIAL

Suppose we have a function which is discontinuous at f (x)
. As a practical matter, we must insert a transition inter-x = x1

val over which to join the two discontinuous values, say x
. Let our smoothing function be a cubic polyno-x = x2 −x1

mial,
(1)p(x) = a x3 + b x2 + c x + d

Then and must match and at thep(x) dp(x)/dx f (x) df (x)/dx
discontinuity transition endpoints and . In other words,x1 x2
we require

(2)

p(x1) = f (x1)
p(x2) = f (x2)
dp
dx x1

= df
dx x1

dp
dx x2

= df
dx x2

⎫

⎭

⎬

⎪

⎪

⎪

⎪

⎪

⎪

Substituting eq. (1) into eqs. (2), solving for the
coefficients, and putting those back into eq. (1), we find the
solution

f(x) = (x2 − x1) df
dx1

+ df
dx2

− 2(f (x2) − f (x1)) x3

(x2 − x1)3

+ 3
x1 + x2
x2 − x1

(f (x2) − f (x1)) − (x1 + x2) df
dx1

+ df
dx2

− x2
df

dx1
+ x1

df
dx2

x2

(x2 − x1)2

+
x1 + x2
x2 − x1 x2

df
dx1

+ x1
df

dx2
+

x1x2
x2 − x1

df
dx1

+ df
dx2

− 6
x1x2

(x2 − x1)2 (f (x2) − f (x1)) x
x2 − x1

− 1
(x2 − x1)2

x1
3f (x2) − x2

3f (x1)
x2 − x1

+ x1x2 x2
df

dx1
+ x1

df
dx2

− 3
x1f (x2) − x2 f (x1)

x2 − x1

(3)
Figure 1 is a plot illustrating this cubic transition function

from to .x1 = 0 x2 = 1

3. A C++ IMPLEMENTATION

The following C++ code evaluates the cubic solution, eq.
(3), at the point x, given the two endpoints x1 and x2, the two
function values f1 and f2 at the endpoints, and the deriva-
tives of the function df1 and df2 at the endpoints. It has
been optimized by Maple, so it is fast but not particularly
human-readable.
inline double cubic(double x,

double x1, double x2, double f1,
double f2, double df1, double df2)

{
double t7 = x2*x2;
double t16 = t7*x1;
double t8 = x1*x1;
double t15 = x2*t8;
double t13 = x*x;
double t14 = t13*x;
double t6 = 2.0*x1+x2;
double t5 = -x2+x1;
double t3 = x1+2.0*x2;

A CUBIC TRANSITION CURVE TO BRIDGE A DISCONTINUITY

MARC A. MURISON
Astronomical Applications Department, U.S. Naval Observatory, Washington, DC 20392

murison@aa.usno.navy.mil

March 9, 1999

ABSTRACT
I show for reference a quick and painless way to smoothly bridge a discontinuity in a function. This is useful, for

example, in the numerical integration of force functions containing discontinuities.

Key words: curves — ODE — numerical integration

D:\text\notes\TransitionCurve.lwp MAM 7/23/2003 4:37pm

Figure 1

double t1;
t1 = (((t8*x1-3.0*t15)*f2 +
 (-x2*t7+3.0*t16)*f1 +

 (2.0*t14 + 6.0*x1*x2*x -
 3.0*(x1+x2)*t13)*(f2-f1)

)/t5 +
 (df1+df2)*t14 +
 (-t3*df1-t6*df2)*t13 +
 (t6*x2*df1+t3*x1*df2)*x -
 df1*t16 - df2*t15
)/(t5*t5);
return(t1);

}
The function below, adapted from a working project that

implements this transition curve scheme in a numerical inte-
gration of solar wind forces, illustrates how one might imple-
ment a finite transition time at discontinuities. The problem is
not quite a straightforward one because most numerical ODE
integrators calculate the force function at several substeps dur-
ing a timestep, and the sequence of substeps may or may not
span the beginning or end of a discontinuity and all or part of
its transition curve. In this particular example, the force is
constant between the discontinuities and outside the transition
curves, similar to the example shown in Figure 1.

At some integration time t, the variable t_changed is the
time of the previous discontinuity, transition_time is the
(possibly artificial) amount of time introduced to bridge the

gap between discontinuity values, dt_change is the amount
of time from t_changed to the next discontinuity, F is the
current value of the force, F_new and F_old are then the new
and old values, and deriv() is the function that calculates
the new discontinuous force value. All of these variables are
encapsulated C++ class data. In a C program, they would
have at least file scope.

void StateVector::ForceFunction(double t)
{

double t1 = t_changed;
double t2 = t1 + transition_time;
double t3 = t1 + dt_change;
if(t < t1) {

F = F_old;
} else if(t > t1 && t < t2) {

F = cubic(t,t1,t2,F_old,F_new,0,0);
} else if(t > t3) {

F = deriv(t);
F_old = F_new;
F_new = F;
t_changed = t3;

} else {
F = F_new;

}
}

CUBIC TRANSITION CURVE 2 of 2

D:\text\notes\TransitionCurve.lwp MAM 7/23/2003 4:37pm

